11 research outputs found

    Clearer Frames, Anytime: Resolving Velocity Ambiguity in Video Frame Interpolation

    Full text link
    Existing video frame interpolation (VFI) methods blindly predict where each object is at a specific timestep t ("time indexing"), which struggles to predict precise object movements. Given two images of a baseball, there are infinitely many possible trajectories: accelerating or decelerating, straight or curved. This often results in blurry frames as the method averages out these possibilities. Instead of forcing the network to learn this complicated time-to-location mapping implicitly together with predicting the frames, we provide the network with an explicit hint on how far the object has traveled between start and end frames, a novel approach termed "distance indexing". This method offers a clearer learning goal for models, reducing the uncertainty tied to object speeds. We further observed that, even with this extra guidance, objects can still be blurry especially when they are equally far from both input frames (i.e., halfway in-between), due to the directional ambiguity in long-range motion. To solve this, we propose an iterative reference-based estimation strategy that breaks down a long-range prediction into several short-range steps. When integrating our plug-and-play strategies into state-of-the-art learning-based models, they exhibit markedly sharper outputs and superior perceptual quality in arbitrary time interpolations, using a uniform distance indexing map in the same format as time indexing. Additionally, distance indexing can be specified pixel-wise, which enables temporal manipulation of each object independently, offering a novel tool for video editing tasks like re-timing.Comment: Project page: https://zzh-tech.github.io/InterpAny-Clearer/ ; Code: https://github.com/zzh-tech/InterpAny-Cleare

    Quanta Burst Photography

    Full text link
    Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.Comment: A version with better-quality images can be found on the project webpage: http://wisionlab.cs.wisc.edu/project/quanta-burst-photography

    DisCO: Portrait Distortion Correction with Perspective-Aware 3D GANs

    Full text link
    Close-up facial images captured at short distances often suffer from perspective distortion, resulting in exaggerated facial features and unnatural/unattractive appearances. We propose a simple yet effective method for correcting perspective distortions in a single close-up face. We first perform GAN inversion using a perspective-distorted input facial image by jointly optimizing the camera intrinsic/extrinsic parameters and face latent code. To address the ambiguity of joint optimization, we develop optimization scheduling, focal length reparametrization, starting from a short distance, and geometric regularization. Re-rendering the portrait at a proper focal length and camera distance effectively corrects perspective distortions and produces more natural-looking results. Our experiments show that our method compares favorably against previous approaches qualitatively and quantitatively. We showcase numerous examples validating the applicability of our method on portrait photos in the wild. We will release our system and the evaluation protocol to facilitate future work.Comment: Project website: https://portrait-disco.github.io

    Privacy-Preserving Visual Localization with Event Cameras

    Full text link
    We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization

    Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis

    No full text
    Photocatalytic water splitting for H2 production becomes one of the most favorable pathways for solar energy utilization, while the charge-separation dynamics in composite photocatalysts is largely elusive. In the present work, CdS-decorated metal–organic framework (MOF) composites, namely, CdS/UiO-66, have been synthesized and exhibit high H2 production activity from photocatalytic water splitting, far surpassing the MOF and CdS counterparts, under visible light irradiation. Transient absorption (TA) spectroscopy has been adopted in this report to unveil the charge-separation dynamics in CdS/UiO-66 composites, a key process that dictates their function in photocatalysis. We show that, in addition to the preferable formation of fine CdS particles assisted by the MOF, effective electron transfer, which occurs from excited CdS to UiO-66, significantly inhibits the recombination of photogenerated charge carriers, ultimately boosting the photocatalytic activity for H2 generation. This report on charge-separation dynamics for CdS–MOF composites affords significant insights for future fabrication of advanced composite photocatalysts
    corecore